Skip to main content

1.2.7 Autonomic Computing

Autonomic computing is an approach to computing that seeks to create systems that can manage and operate themselves without the need for human intervention. The term "autonomic" is derived from the human autonomic nervous system, which regulates bodily functions such as heart rate, respiration, and digestion without conscious effort.

Autonomic computing systems use advanced algorithms and machine learning techniques to monitor and analyze data from various sources, including system logs, network traffic, and user behavior, in order to detect and diagnose problems and optimize performance. These systems can also adapt to changing conditions and requirements, making them more resilient and efficient.

Autonomic computing is particularly useful in large-scale, complex systems that are difficult to manage manually. It has applications in a wide range of fields, including finance, healthcare, transportation, and energy. By automating many of the tasks traditionally performed by human operators, autonomic computing can improve system reliability, reduce downtime, and increase productivity.


Comments

Popular posts from this blog

2.1 VIRTUAL MACHINES PROVISIONING AND MANAGEABILITY

In this section, we will have an overview on the typical life cycle of VM and its major possible states of operation, which make the management and automation of VMs in virtual and cloud environments easier than in traditional computing environments As shown in Figure above, the cycle starts by a request delivered to the IT department, stating the requirement for creating a new server for a particular service.  IT administration to start seeing the servers’ resource pool, matching these resources with the requirements, and starting the provision of the needed virtual machine.  Once provisioned machine started, it is ready to provide the required service according to an SLA, or a time period after which the virtual is being released.

2.2 VIRTUAL MACHINE MIGRATION SERVICES

Migration service, in the context of virtual machines, is the process of moving a virtual machine from one host server or storage location to another; there are different techniques of VM migration, hot/life migration, cold/regular migration, and live storage migration of a virtual machine. In process of migration, all key machines’ components, such as CPU, storage disks, networking, and memory, are completely virtualized, thereby facilitating the entire state of a virtual machine to be captured by a set of easily moved data files. 2.2.1. Migrations Techniques Live Migration and High Availability Live migration (which is also called hot or real-time migration) can be defined as the movement of a virtual machine from one physical host to another while being powered on.  Live migration process takes place without any noticeable effect from the end user’s point of view (a matter of milliseconds).  One of the most significant advantages of live migration is the fact that it facili...

1.2 ROOTS OF CLOUD COMPUTING

We can track the roots of clouds computing by observing the advancement of several technologies, especially in hardware (virtualization, multi-core chips), Internet technologies (Web services, service-oriented architectures, Web 2.0), distributed computing (clusters, grids), and systems management (autonomic computing, data center automation).  Below Figure shows the convergence of technology fields that significantly advanced and contributed to the advent of cloud computing. . We present a closer look at the technologies that form the base of cloud computing, with the aim of providing a clearer picture of the cloud ecosystem as a whole. 1.2.1 From Mainframes to Clouds 1.2.2 SOA, Web Services, Web 2.0, and Mashups 1.2.3 Grid Computing 1.2.4 Utility Computing 1.2.5 Hardware Virtualization 1.2.6 Virtual Appliances and the Open Virtualization Format 1.2.7 Autonomic Computing ______ Cloud computing has its roots in several technologies and developments, including virtualization, gr...