Skip to main content

1.2.3 Grid Computing

 Grid computing enables the aggregation of distributed resources and transparent access to them.

Most production grids such as TeraGrid and EGEE seek to share compute and storage resources distributed across different administrative domains, with their main focus being speeding up a broad range of scientific applications, such as climate modelling, drug design, and protein analysis.

A key aspect of the grid vision realization has been building standard Web services-based protocols that allow distributed resources to be “discovered, accessed, allocated, monitored, accounted for, and billed for, etc., and in general managed as a single virtual system",

The Open Grid Services Architecture (OGSA) addresses this need for standardization by defining a set of core capabilities and behaviours that address key concerns in grid systems.

Ensuring QoS in grids has been perceived as a difficult endeavour. Lack of performance isolation has prevented grid adoption. 

Activities associated with one user or virtual organization (VO) can influence, in an uncontrollable way, the performance perceived by other users using the same platform. Therefore, the impossibility of enforcing QoS and guaranteeing execution time became a problem, especially for time-critical applications

On grids is the availability of resources with diverse software configurations, including disparate operating systems, libraries, compilers, runtime environments, and so forth. At the same time, user applications would often run only on specially customized environments. Consequently, a portability barrier has often been present on most grid infrastructures, inhibiting users of adopting grids as utility computing environments

Virtualization technology has been identified as the perfect fit to issues that have caused frustration when using grids, such as hosting many dissimilar software applications on a single physical platform. In this direction, some research projects (e.g., Globus VirtualWorkspaces ) aimed at evolving grids to support an additional layer to virtualize computation, storage, and network resources.


Grid Computing is a distributed computing architecture, In Grid Computing, resources are used in a collaborative pattern, and also in grid computing, the users do not pay for use. 

Comments

Popular posts from this blog

2.1 VIRTUAL MACHINES PROVISIONING AND MANAGEABILITY

In this section, we will have an overview on the typical life cycle of VM and its major possible states of operation, which make the management and automation of VMs in virtual and cloud environments easier than in traditional computing environments As shown in Figure above, the cycle starts by a request delivered to the IT department, stating the requirement for creating a new server for a particular service.  IT administration to start seeing the servers’ resource pool, matching these resources with the requirements, and starting the provision of the needed virtual machine.  Once provisioned machine started, it is ready to provide the required service according to an SLA, or a time period after which the virtual is being released.

2.2 VIRTUAL MACHINE MIGRATION SERVICES

Migration service, in the context of virtual machines, is the process of moving a virtual machine from one host server or storage location to another; there are different techniques of VM migration, hot/life migration, cold/regular migration, and live storage migration of a virtual machine. In process of migration, all key machines’ components, such as CPU, storage disks, networking, and memory, are completely virtualized, thereby facilitating the entire state of a virtual machine to be captured by a set of easily moved data files. 2.2.1. Migrations Techniques Live Migration and High Availability Live migration (which is also called hot or real-time migration) can be defined as the movement of a virtual machine from one physical host to another while being powered on.  Live migration process takes place without any noticeable effect from the end user’s point of view (a matter of milliseconds).  One of the most significant advantages of live migration is the fact that it facili...

Open SaaS and SOA

A considerable amount of SaaS software is based on open source software.  When open source software is used in a SaaS,  it referred to as Open SaaS.  The advantages of using open source software are that systems are much cheaper to deploy because you don’t have to purchase the operating system or software, there is less vendor lock-in, and applications are more portable.  The popularity of open source software, from Linux to APACHE, MySQL, and Perl (the LAMP platform) on the Internet, and the number of people who are trained in open source software make Open SaaS an attractive proposition.  The impact of Open SaaS will likely translate into better profitability for the companies that deploy open source software in the cloud, resulting in lower development costs and more robust solutions. SOA (Service-Oriented Architecture): SOA is an architectural approach for designing and developing software systems that are composed of loosely coupled services.  In an SO...